Optimal positioning of storage systems in microgrids based on complex networks centrality measures
نویسندگان
چکیده
منابع مشابه
Range-limited Centrality Measures in Complex Networks
Here we present a range-limited approach to centrality measures in both nonweighted and weighted directed complex networks. We introduce an efficient method that generates for every node and every edge its betweenness centrality based on shortest paths of lengths not longer than ℓ=1,...,L in the case of nonweighted networks, and for weighted networks the corresponding quantities based on minimu...
متن کاملGeneralized walks-based centrality measures for complex biological networks.
A strategy for zooming in and out the topological environment of a node in a complex network is developed. This approach is applied here to generalize the subgraph centrality of nodes in complex networks. In this case the zooming in strategy is based on the use of some known matrix functions which allow focusing locally on the environment of a node. When a zooming out strategy is applied new ma...
متن کاملCentrality Measures in Networks
We show that although the prominent centrality measures in network analysis make use of different information about nodes’ positions, they all process that information in a very restrictive and identical way. They all spring from a common family that are characterized by the same axioms. In particular, they are all based on a additively separable and linear treatment of a statistic that capture...
متن کاملEigenvector-Based Centrality Measures for Temporal Networks
Numerous centrality measures have been developed to quantify the importances of nodes in time-independent networks, and many of them can be expressed as the leading eigenvector of some matrix. With the increasing availability of network data that changes in time, it is important to extend such eigenvector-based centrality measures to time-dependent networks. In this paper, we introduce a princi...
متن کاملCentrality Measures from Complex Networks in Active Learning
In this paper, we present some preliminary results indicating that Complex Network properties may be useful to improve performance of Active Learning algorithms. In fact, centrality measures derived from networks generated from the data allow ranking the instances to find out the best ones to be presented to a human expert for manual classification. We discuss how to rank the instances based on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2018
ISSN: 2045-2322
DOI: 10.1038/s41598-018-35128-6